Shop

PEG MGF 2mg

$25.00

Creates new muscle fibres. Stimulate muscle growth. Promote growth in body parts not up to par with rest of physique

Categories: ,

Description

Scientific Name: (PEGylated Mechano Growth Factor)
Clinical Test Expectation: Creates new muscle fibres. Stimulate muscle growth. Promote growth in body parts not up to par with rest of physique
MG Strength:  2mg per vial

Detailed Product Information

MGF is a splice variant of the IGF produced by a frame shift if the IGF gene. MGF increase the muscle stem cell count, so that more may fuse and become part of adult muscle cells. This is a process required for adult muscle cells to continue growing.

Why PEGylate MGF?

MGF exhibits local effects in skeletal muscle and without modification is not systemic (can’t travel through the body). The problem with synthetic MGF is that it is introduced IM and is water based so it goes into the blood stream. MGF is not stable in the blood stream for more than a matter of minutes. Biologically produced MGF is made locally and does not enter the bloodstream and is short acting so stability is not an issue. By PEGylating the MGF we can make synthetic MGF injected IM almost as efficient as local produced MGF. Clinically proven Advanced Pegylation, the technology of polyethylene glycol (PEG) conjugation, holds significant promise in maintaining effective plasma concentrations of systemically administered drugs. It does this by surrounding part of the peptide with a unique structure made of polyethylene glycol, which can be attached to a protein molecule. The result of a correct PEGylation is simlar to the protective mechanism of a turtle shell. The polyethylene glycol groups protect the peptide but don’t surround it completely. The active sites of the peptide are still free to do their biological function. In this case the shell is a negative charged shield against positively charged compounds that would affect the protein. This also provides a nice steric chamber for the peptide to reside in. So it’s a happy turtle

Neurological research has shown that utilizing PEGylated MGF resulted in a longer more stable acting version of the MGF peptide in serum/blood.

The bottom line is ….

PEGylation can improve performance and dosing convenience of peptides, proteins, antibodies, oligonucleotides and many small molecules by optimizing pharmacokinetics, increasing bioavailability, and decreasing immunogenicity and dosing frequency. PEGylation also can increase therapeutic efficacy by enabling increased drug concentration, improved biodistribution, and longer dwell time at the site of action. As a result, therapeutic drug concentrations can be achieved with less frequent dosing—a significant benefit to patients who are taking injected drugs.

The PEG itself does not react in the body and is very safe. PEG has been approved by the US Food and Drug Administration (FDA) as a base or vehicle for use in foods and cosmetics and in injectable, topical, rectal and nasal pharmaceutical formulations. PEG has demonstrated little toxicity, is eliminated intact by the kidneys or in the feces and lacks immunogenicity. The risk associated with current PEGylated drugs are due to the way the drug itself acts not the PEG. MGF, as it is being currently sold, is getting a bad rep from people due to the fact they feel that they are not seeing gains from it. Many people believe that the use of MGF in their cycles or protocols just flat out won’t work, however, this is far from the truth.

More MGF information

Complete Overview of MGF or IGF-IEc

From its sequence, MGF is derived from the IGF-I gene by alternative splicing and has different 3′ exons to the liver or systemic type (IGF-IEa). It has a 49 base pair insert in the human, and a 52 base pair insert in rodents, within the E domain of exon 5. This insert results in a reading frame shift, with a different carboxy (C) terminal sequence to that of systemic IGF-IEa. MGF and the other IGF isoforms have the same 5′ exons that encode the IGF-I ligand-binding domain. Processing of pro-peptide yields a mature peptide that is involved in upregulating protein synthesis. However, there is evidence that the carboxy-terminal of the MGF peptide also acts as a separate growth factor. This stimulates division of mononucleated myoblasts or satellite (stem) cells, thereby increasing the number available for local repair

During the early stage of skeletal muscle development, myoblasts (muscle stem cells) fuse to form syncytial myotubes, which become innervated and develop into muscle fibres. Thereafter, mitotic proliferation of nuclei within the muscle fibres ceases. However, during postnatal (after development) growth, additional nuclei are provided by satellite cells (myoblast) fusing with myotubules. Muscle damage-recovery seems to have a similar cellular mechanism, in that satellite cells become activated and fuse with the damaged muscle fibres (reviewed by Goldring et al. 2002). This is also pertinent to certain diseases such as muscular dystrophy in which muscle tissue is not maintained and which have been associated with a deficiency in active satellite (stem) cells (Megeney et al. 1996; Seale & Rudnicki, 2000) and in myogenic factors (Heslop et al. 2000). Skeletal muscle mass and regenerative capacity have also been shown to decline with age (Sadeh, 1988; Carlson et al. 2001). The reduced capacity to regenerate in older muscle seems to be due to the decreased ability to activate satellite cell proliferation (Chakravarthy et al. 2000). The markedly lower expression of MGF in older rat muscles (Owino et al. 2001) and human muscle (Hameed et al. 2003) in response to mechanical overload has been associated with the failure to activate satellite cells, leading to age-related muscle loss (Owino et al. 2001). Your muscle cels can not grow once they have reached a certain size unless they obtain more nuclei from the myoblast. MGF increases the myblast available to donate their nuclei to the adult muscle cell.

“MGF appears to have a dual action in that, like the other IGF-I isoforms, it upregulates protein synthesis as well as activating satellite cells. However, the latter role of MGF is probably more important as most of the mature IGF-I will be derived from IGF-IEa during the second phase of repair. Nevertheless, it has been shown that MGF is a potent inducer of muscle hypertrophy in experiments in which the cDNA of MGF was inserted into a plasmid vector and introduced by intramuscular injection. This resulted in a 20 % increase in the weight of the injected muscle within 2 weeks, and the analyses showed that this was due to an increase in the size of the muscle fibres (Goldspink, 2001). Similar experiments by other groups have also been carried out using a viral construct containing the liver type of IGF-I, which resulted in a 25 % increase in muscle mass, but this took over 4 months to develop (Musaro et al. 2001). Hence, the dual role MGF plays in inducing satellite cell activation as well as protein synthesis suggests it is much more potent than the liver type or IGF-IEa for inducing rapid hypertrophy.”

These results are based on actual transplantation of the DNA coding for the peptides. This is a permanent effect and much more potent than IM injections of the peptide itself. You will not see a 20% increase in muscle mass through IM injections as claimed above.

MGF Mechano growth factor (MGF) is a novel splice variant of the insulin growth factor -1 (IGF-1), also known as IGF-1Ec in humans and IGF-1Eb in rodents. It is actually originally called MGF because the RNA form of it is expressed in muscle tissues in response to the overload or/and damage. The C-terminal peptide of the mechano growth factor (MGF) is a crucial region for the alternative splicing of the peptide. Purity: 98% (HPLC). 2mg per vial. MGF is a splice variant of the IGF gene which increases stem cell count in the muscle and allows for muscle fibers to fuse and mature. This is a process required for growth of adult muscle. Natural MGF is made locally and does not travel into the bloodstream. Synthetic MGF is water based and when administered intramuscularly, travels into the bloodstream. MGF is only stable in the blood stream for only a few minutes. PEGylation is the act of attaching a Polyethylene glycol (PEG) structure to another larger molecule (in this case, MGF). The PEG acts as a protective coating and the theory here is that this will allow the MGF to be carried through the blood stream without being broken down.

Molecular Formula : C121H200N42O39 Molecular Weight :2888.16 CAS No. : N/A Sequence: Tyr-Gln-Pro-Pro-Ser-Thr-Asn-Lys-Asn-Thr-Lys-Ser-Gln-Arg-Arg-Lys-Gly-Ser-Thr-Phe-Glu-Glu-Arg-Lys

FOR RESEARCH PURPOSES ONLY: MGF Mechano growth factor (MGF) is a novel splice variant of the insulin growth factor -1 (IGF-1), also known as IGF-1Ec in humans and IGF-1Eb in rodents. It is actually originally called MGF because the RNA form of it is expressed in muscle tissues in response to the overload or/and damage. The C-terminal peptide of the mechano growth factor (MGF) is a crucial region for the alternative splicing of the peptide. The alternative splicing in the MGF is brought about by the shift in the reading frame in which a specific C-terminal sequence (E-domain) is esconded by exon 5 and the first part of the exon 6. Another interesting point in MGF is that, because of the E domain it contains, MGF can act on muscles independently from the rest of the molecule. Furthermore, MGF can elicit very different effects with mGF promoting satellite cells proliferation and IGF-1 inducing differentiation (Dluzniewska et al. 2005). MGF was suggested to play a number of physiological roles because the failure in its expression may result to age-related loss of skeletal function. Included in its functions is its ability to become a potent neuroprotective as supported by the study that has shown functional copies of the MGF cDNA to be expressed in a plasmid vector which then protected facial neurons after nerve damage (Dluzniewska et al. 2005). One such failure is called sarcopenia. Sarcopenia is the progressive loss of muscle tissues with the advancement in age. This illness is considered to be one of the major public health problems which is being experienced especially by the industrialized countries, and their effects are expected to place an increasing demands on public healthcare worldwide (Lynch 2004).

When mechanical overload is introduced to a muscle (as by weight training), the IGF-1 gene is released and is differentially spliced during the bodies response. Initially, it it is spliced to produce predominantly IGF-1Ec (called the MGF splice variant of IGF-1). This early splicing stimulates satellite cells into activation. Which in turn allows the activation of extra undamaged nuclei to grow new muscle fiber and tissue. The appearance of MGF also initiates the upregulation of new protein synthesis. After this initial splicing of IGF-1 into MGF, production then switches towards producing a systemic release of IGF-1Ea from the liver, which also upregulates protein synthesis as well. The expression of IGF-1 splice variants, over the course of the healing and regrowth phase of muscle repair is thought to be the primary anabolic mechanism by which the body produces new muscle.

MGF is available as an injectable peptide, and it has been anecdotally shown that injecting it will cause a response in the area resulting in localized muscle growth. It would also appear that with regards to age, the young have a better ability to respond to MGF (4), and that the elderly experience a decreased response to MGF which results in a decreased ability to stimulate the growth of new muscle tissue.

Insulin like growth factor-1 (IGF-1) expression is implicated in myocardial pathophysiology, and two IGF-1 mRNA splice variants have been detected in rodents, IGF-1Ea and mechano-growth factor (MGF). We investigated the expression pattern of IGF-1 gene transcripts in rat myocardium from 1 h up to 8 wks after myocardial infarction induced by left anterior descending coronary artery ligation. In addition, we characterized IGF-1 and MGF E peptide action and their respective signaling in H9C2 myocardial-like cells in vitro. IGF-1Ea and MGF expression were significantly increased, both at transcriptional and translational levels, during the late postinfarction period (4 and 8 wks) in infarcted rat myocardium. Measurements of serum IGF-1 levels in infarcted rats were initially decreased (24 h up to 1 wk) but remained unaltered throughout the late experimental phase (4 to 8 wks) compared with sham-operated rats. Furthermore, specific anti-IGF-1R neutralizing antibody failed to block the synthetic MGF E peptide action, whereas it completely blocked IGF-1 action on the proliferation of H9C2 cells. Moreover, this synthetic MGF E peptide did not activate Akt phosphorylation, whereas it activated ERK1/2 in H9C2 rat myocardial cells. These data support the role of IGF-1 expression in the myocardial repair process and suggest that synthetic MGF E peptide actions may be mediated via an IGF-1R independent pathway in rat myocardial cells, as suggested by our in vitro experiments.

Recent studies have also discovered two clones of the hybridonoma secreting monoclonal antibodies to the mechano-growth factor have been developed by cell fusion technique. The monoclonal antibody of one clone recognizes the human MGF peptide that is absent in insulin-like growth factor-1 (IGF-1) which comprised mostly of amino acids from 87-111. Enzyme-linked immunosorbent assay (ELISA) has further shown that there is a high affinity binding constants with the full length of the MGF and the 87-111 fragments of the clones

Mixing and our recommended dosage

You inject 2ml water into the vial of PEG MGF from the water vial. 1 full syringe is 1ml. You then wait for the vial powder content to dissolve ON ITS OWN. DO NOT SHAKE THE VIAL TO MIX POWDER. Once dissolved and clear in colour you draw out 0.2-0.4 on the syringe and inject 3 times a week evenly spacing injections. A vial should last 10-14 days.

Reviews

There are no reviews yet.

Be the first to review “PEG MGF 2mg”

Your email address will not be published. Required fields are marked *